DisjunctiveProgramming.jl

Generalized Disjunctive Programming (GDP) extension to JuMP, based on the GDP modeling paradigm described in Perez and Grossmann, 2023.

codecov Docs Docs

Installation

using Pkg
Pkg.add("DisjunctiveProgramming")

Model

A generalized disjunctive programming (GDP) model is created using GDPModel, where the optimizer can be passed at model creation, along with other keyword arguments supported by JuMP Models.

using DisjunctiveProgramming
using HiGHS

model = GDPModel(HiGHS.Optimizer)

A GDPModel is a JuMP Model with a GDPData field in the model's .ext dictionary, which stores the following:

  • Logical Variables: Indicator variables used for the various disjuncts involved in the model's disjunctions.
  • Logical Constraints: Selector (cardinality) or proposition (Boolean) constraints describing the relationships between the logical variables.
  • Disjunct Constraints: Constraints associated with each disjunct in the model.
  • Disjunctions: Disjunction constraints.
  • Solution Method: The reformulation technique or solution method. Currently, supported methods include Big-M, Hull, and Indicator Constraints.
  • Reformulation Variables: List of JuMP variables created when reformulating a GDP model into a MIP model.
  • Reformulation Constraints: List of constraints created when reformulating a GDP model into a MIP model.
  • Ready to Optimize: Flag indicating if the model can be optimized.

Additionally, the following mapping dictionaries are stored in GDPData:

  • Indicator to Binary: Maps the Logical variables to their respective reformulated Binary variables.
  • Indicator to Constraints: Maps the Logical variables to the disjunct constraints associated with them.

A GDP Model's GDPData can be accessed via:

data = gdp_data(model)

Logical Variables

Logical variables are JuMP AbstractVariables with two fields: fix_value and start_value. These can be optionally specified at variable creation. Logical variables are created with the @variable JuMP macro by adding the tag Logical as the last keyword argument. As with the regular @variable macro, variables can be named and indexed:

@variable(model, Y[1:3], Logical)

Logical Constraints

Two types of logical constraints are supported:

  1. Selector or cardinality constraints: A subset of Logical variables is passed and Exactly, AtMost, or AtLeast n of these is allowed to be true. These constraints are specified with the func $\in$ set notation in MathOptInterface in a @constraint JuMP macro. It is not assumed that disjunctions have an Exactly(1) constraint enforced on their disjuncts upon creation. This constraint must be explicitly specified.

    julia @constraint(model, [Y[1], Y[2]] in Exactly(1))

  2. Proposition or Boolean constraints: These describe the relationships between Logical variables via Boolean algebra. Supported logical operators include:

    • or logical_or or || (OR, typed with \vee + tab).
    • or logical_and or && (AND, typed with \wedge + tab).
    • ¬ or logical_not (NOT, typed with \neg + tab).
    • of implies (Implication, typed with \Longrightarrow + tab).
    • or iff or == (double implication or equivalence, typed with \Leftrightarrow + tab).

The @constraint JuMP macro is used to create these constraints with :=:

@constraint(model, Y[1] ⟹ Y[2] := true)

Note: The parenthesis in the example above around the implication clause are only required when the parent logical operator is or to avoid parsing errors.

Logical propositions can be reformulated to IP constraints by automatic reformulation to Conjunctive Normal Form.

Disjunctions

Disjunctions are built by first defining the constraints associated with each disjunct. This is done via the @constraint JuMP macro with the extra Disjunct tag specifying the Logical variable associated with the constraint:

@variable(model, x)
@constraint(model, x ≤ 100, Disjunct(Y[1]))
@constraint(model, x ≥ 200, Disjunct(Y[2]))

After all disjunct constraints associated with a disjunction have been defined, the disjunction is created with the @disjunction macro, where the disjunction is defined as a Vector of Logical variables associated with each disjunct:

@disjunction(model, [Y[1], Y[2]])

Disjunctions can be nested by passing an additional Disjunct tag. The Logical variable in the Disjunct tag specifies which disjunct, the nested disjunction belongs to:

@disjunction(model, Y[1:2], Disjunct(Y[3]))

Empty disjuncts are supported in GDP models. When used, the only constraints enforced on the model when the empty disjunct is selected are the global constraints and any other disjunction constraints defined.

For convenience, the Exactly(1) selector constraint is added by default when adding a disjunction to the model. In other words, @disjunction(model, Y) will add the disjunction and automatically add the logical constraint Y in Exactly(1). For nested disjunctions, the appropriate Exactly constraint is added (e.g., @constraint(model, Y[1:2] in Exactly(Y[3]))) to indicate that Exactly 1 logical variable in Y[1:2] is set to true when Y[3] is true, and both variables in Y[1:2] are set to false when Y[3] is false, meaning the parent disjunct is not selected. Adding the Exactly selector constraint by default can be disabled by setting the keyword argument exactly1 to false in the @disjunction macro.

MIP Reformulations

The following reformulation methods are currently supported:

  1. Big-M: The BigM struct is used.

  2. Hull: The Hull struct is used.

  3. Indicator: This method reformulates each disjunct constraint into an indicator constraint with the Boolean reformulation counterpart of the Logical variable used to define the disjunct constraint. This is invoked with Indicator.

Release Notes

Prior to v0.4.0, the package did not leverage the JuMP extension capabilities and was not as robust. For these earlier releases, refer to Perez, Joshi, and Grossmann, 2023 and the following JuliaCon 2022 Talk.

Example

The example below is from the Cornell University Computational Optimization Open Textbook.

using DisjunctiveProgramming
using HiGHS

m = GDPModel(HiGHS.Optimizer)
@variable(m, 0 ≤ x[1:2] ≤ 20)
@variable(m, Y[1:2], Logical)
@constraint(m, [i = 1:2], [2,5][i] ≤ x[i] ≤ [6,9][i], Disjunct(Y[1]))
@constraint(m, [i = 1:2], [8,10][i] ≤ x[i] ≤ [11,15][i], Disjunct(Y[2]))
@disjunction(m, Y)
@objective(m, Max, sum(x))
print(m)
# Max x[1] + x[2]
# Subject to
#  x[1] ≥ 0
#  x[2] ≥ 0
#  x[1] ≤ 20
#  x[2] ≤ 20

##
optimize!(m, gdp_method = BigM(100, false)) #specify M value and disable M-tightening
print(m)
# Max x[1] + x[2]
# Subject to
#  Y[1] + Y[2] = 1
#  x[1] - 100 Y[1] ≥ -98
#  x[2] - 100 Y[1] ≥ -95
#  x[1] - 100 Y[2] ≥ -92
#  x[2] - 100 Y[2] ≥ -90
#  x[1] + 100 Y[1] ≤ 106
#  x[2] + 100 Y[1] ≤ 109
#  x[1] + 100 Y[2] ≤ 111
#  x[2] + 100 Y[2] ≤ 115
#  x[1] ≥ 0
#  x[2] ≥ 0
#  x[1] ≤ 20
#  x[2] ≤ 20
#  Y[1] binary
#  Y[2] binary

##
optimize!(m, gdp_method = Hull())
print(m)
# Max x[1] + x[2]
# Subject to
#  -x[2] + x[2]_Y[1] + x[2]_Y[2] = 0
#  -x[1] + x[1]_Y[1] + x[1]_Y[2] = 0
#  Y[1] + Y[2] = 1
#  -2 Y[1] + x[1]_Y[1] ≥ 0
#  -5 Y[1] + x[2]_Y[1] ≥ 0
#  -8 Y[2] + x[1]_Y[2] ≥ 0
#  -10 Y[2] + x[2]_Y[2] ≥ 0
#  x[2]_Y[1]_lower_bound : -x[2]_Y[1] ≤ 0
#  x[2]_Y[1]_upper_bound : -20 Y[1] + x[2]_Y[1] ≤ 0
#  x[1]_Y[1]_lower_bound : -x[1]_Y[1] ≤ 0
#  x[1]_Y[1]_upper_bound : -20 Y[1] + x[1]_Y[1] ≤ 0
#  x[2]_Y[2]_lower_bound : -x[2]_Y[2] ≤ 0
#  x[2]_Y[2]_upper_bound : -20 Y[2] + x[2]_Y[2] ≤ 0
#  x[1]_Y[2]_lower_bound : -x[1]_Y[2] ≤ 0
#  x[1]_Y[2]_upper_bound : -20 Y[2] + x[1]_Y[2] ≤ 0
#  -6 Y[1] + x[1]_Y[1] ≤ 0
#  -9 Y[1] + x[2]_Y[1] ≤ 0
#  -11 Y[2] + x[1]_Y[2] ≤ 0
#  -15 Y[2] + x[2]_Y[2] ≤ 0
#  x[1] ≥ 0
#  x[2] ≥ 0
#  x[2]_Y[1] ≥ 0
#  x[1]_Y[1] ≥ 0
#  x[2]_Y[2] ≥ 0
#  x[1]_Y[2] ≥ 0
#  x[1] ≤ 20
#  x[2] ≤ 20
#  x[2]_Y[1] ≤ 20
#  x[1]_Y[1] ≤ 20
#  x[2]_Y[2] ≤ 20
#  x[1]_Y[2] ≤ 20
#  Y[1] binary
#  Y[2] binary

Contributing

DisjunctiveProgramming is being actively developed and suggestions or other forms of contribution are encouraged. There are many ways to contribute to this package. Feel free to create an issue to address questions or provide feedback.